8.1 Estimating the Population Mean, µ

GOALS:

- 1. Understand that the sample mean is **not** expected to be exactly the same as the population mean.
- 2. Understand what a Point Estimate is.
- 3. Understand the differences between a statistic and a parameter.
- 4. Understand how a Confidence Interval improves the estimate of a population mean.

Study 8.1, # 1, 17(3), 19(5), 21(7), 23(9)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Class Notes

Homework

Statistics Home Page

8.1 Estimating the Population Mean, u

If we don't know the value of the Population Mean, μ ,

what can we use to estimate it?

So far, best estimate for μ is the sample mean \overline{X} Can we expect the sample mean to equal μ ?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

Class Notes Homework

© G. Battaly 2018

MG

8.1 Estimating the Population Mean, µ

If $\overline{X} \neq \mu$ then it lies on either side So, we look for an interval that contains μ , using \overline{X} , known $\sigma_{\overline{X}}$, and snc

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

8.1 Estimating the Population Mean, µ

CONFIDENCE INTERVAL

An interval of numbers about a Point Estimate (\overline{X}) associated with a percent of confidence that the parameter lies within the interval.

Area under SNC between -z and +z

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Statistics Home Page

© G. Battaly 2018

