5.3 Inverse Functions: Introduction

(Additional practice for 5.2: p. 338 #13, 15, 17, 41)

HW: 5.3: p. 347 #1, 5, 29, 33, 37, 41, 47, 51, 59, 77, 79, 23-25 **7**

Consider and compare:

$$f(x) = -4 x + 3$$
 and $g(x) = \underline{x-3}$

Start with x. Then:

Note the inverse operations

Class Notes: Prof. G. Battaly, Westchester Community College, NY

 ${\bf Class\ Notes:\ Prof.\ G.\ Battaly, We stchester\ Community\ College, NY}$ Calculus Home Page

5.3 Inverse Functions: Introduction

(Additional practice for 5.2: p. 338 #13, 15, 17, 41)

HW: 5.3: p. 347 #1, 5, 29, 33, 37, 41, 47, 51, 59, 77, 79, 23-25

Consider and compare:

$$f(x) = -4 x + 3$$

$$f(x) = -4 x + 3$$
 and $g(x) = x - 3$

Start with x. Then:

1. Must by -4

2. Add 3

2. Directe by -4

Note the inverse operations

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

5.3 Inverse Functions: Introduction

Consider and compare:

These appear to be inverse functions, but what about x=0? Are the inverse functions for all x? all y?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

Homework Part 1 Homework Part 2

Intro

5.3 Inverse Functions: Introduction

Consider and compare:

 $f(x) = \sqrt{(2 \times 3)}$ and $g(x) = \frac{2}{x + 3}$ $x \ge 3$ /₂
Start with x. Then:

1. Mars. by 2

1. Square

2. Subt. 3

3. Squt.

3. Din. by 2

These appear to be inverse functions, but what about x=0? Are the inverse functions for all x? all y?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

5.3 Inverse Functions: Introduction

How do you find $f^1(x) = g(x)$?

$$f(x) = \sqrt{2 \times 3}$$

and

$$g(x) = \underline{x+3}$$

- 1. rewrite f(x) as y
- 2. exchange x and y
- 3. solve for the new y

$$y = \frac{x^2 + 3}{2}$$

These appear to be inverse functions, but what about x=0? Are the inverse functions for all x? all y?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

5.3 Inverse Functions: Introduction

But, f and g are inverses ONLY when $x \ge \theta$ for g(x)

Calculus Home Page

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

Graph Preview

5.3 Inverse Functions: Definition

A function g is the inverse of a function f if

f(g(x)) = x for each x in the domain of g

AND g(f(x)) = x for each x in the domain of f

(f-1 notation means 'finverse", NOT exponent)

and
$$g(x) = f^{-1}(x)$$

Notes

- 1. If $g(x) = f^{-1}(x)$, then $f(x) = g^{-1}(x)$
- 2. Domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f
- 3. If f^{-1} exists, then it is unique (only one)
- 4. goes in both directions

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

5.3 Inverse Functions: Introduction

But, f and g are inverses ONLY when $x \ge \theta$ for g(x)

Calculus Home Page

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

Graph Preview

5.3 Inverse Functions: Introduction

But, f and g are inverses ONLY when $g \ge \theta$ for g(x)

Calculus Home Page

Calculus Home Page

Calculus Home Page

Calculus Homework Part 1

Graph Preview

5.3 Inverse Functions

G:
$$f(x) = 3 - 4x$$
, $g(x) = \frac{3 - x}{4}$ F: Show fix $f(g(x)) = x$ $f(g(x)) = x$ $g(f(x)) = x$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

5.3 Inverse Functions

example

© 2-13, G. Battaly 12

5.3 Inverse Functions

© 2-13, G. Battaly 13

5.3 Inverse Functions

Explore relationships between a function and its inverse, using Geogebra. Click on the globe.

Uses a quadratic function.

Video of geogebra for Inx

Explore relationships between a function and its inverse, using Geogebra. Click on the globe.

Uses In x.

y=lnx

0

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

example

Calculus Home Page

Homework Part 1

Homework Part 2

5.3 Inverse Functions: Properties

Calculus Home Page
Class Notes: Prof. G. Battaly, Westchester Community College, NY
Homework Part 1
Homework Part 2

5.3 Inverse Functions: Properties

5.3 Inverse Functions: Properties

5.3 Inverse Functions: Properties

(Insert images from APCD or demo the APCD)

(a,b) on f	slope of f	$(b,a)_{onf^{-1}}$	slope of f-1	
(0,1)	1	(1,0)	1	
	1.64		0.609	7
	2.73		0.369	_ (a,b) is on f
	4.48		.583	
'				(b, a) on j

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

points and slopes

5.3 Inverse Functions:

Reflective Property of Inverse Function

The graph of f contains the point (a,b) IFF

the graph of f⁻¹ contains the point (b,a)

Derivative of an Inverse Function

Let f be a function differentiable on I, and $g(x) = f^{-1}(x)$

1. Then g is differentiable at any x for which $f'(g(x)) \neq 0$

2.
$$g'(x) = 1$$
 and $f'(g(x)) \neq 0$
 $f'(g(x))$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework Part 1 Homework Part 2

Reflective Prop & Derivative

5.3 Inverse Functions:

Need 1-to-1

5.3 Inverse Functions:

$$f(x) = 3x \qquad \text{F} : f^{-1}$$

Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

© 2-13, G. Battaly 22

5.3 Inverse Functions:

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Calculus Home Page

5.3 Inverse Functions:

Class Notes Calculus Home Page

Class Notes: Prof. G. Battaly, Westchester Community College, NY

5.3 Inverse Functions:

How do we restrict the domain for these to be inverse functions?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

© 2-13, G. Battaly 25

5.3 Inverse Functions:

G':
$$f(x) = \chi^3 - 6\chi^3 + 12\chi$$
 F: Is f strictly monotonic? Use f'(x)

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework Part 1 Homework Part 2

© 2-13, G. Battaly 26

5.3 Inverse Functions:

G:
$$\int (x) = \chi^3 - 6\chi^3 / 2\chi$$
 F: Is f strictly monotonic? Use f'(x)

$$\int_{-3}^{3} (x^2 - 12x + 12)$$

$$= 3(x^2 - 4x + 4)$$

$$= 3(x^2 - 4x + 4)$$
Yes, f is strictly monotonic: $f'(x) \ge 0$ means that $f(x)$ is increasing on whole domain

Class Notes: Prof. G. Battaly, Westchester Community College, NY Calculus Home Page Homework Part 1 Homework Part 2

Jan 31-2:10 PM