GOALS:

- 1. Define complex numbers as those that include negative radicals.
- 2. Define $i = \sqrt{-1}$ and $i^2 = -1$
- 3. Perform operation of addition, subtraction, multiplication and division with complex numbers.

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

Introduction: Previously...

$$\sqrt{25} =$$

$$\sqrt{18} = \sqrt{} \sqrt{} = \sqrt{}$$

$$\sqrt{8} = \sqrt{\sqrt{2}} = \sqrt{2}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Introduction: Previously...

$$\sqrt{25} = 5$$

$$\sqrt{18} = \sqrt{9} \sqrt{2} = 3 \sqrt{2}$$

$$\sqrt{8} = \sqrt{4}\sqrt{2} = 2\sqrt{2}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

Introduction: What about...?

$$\sqrt{-25}$$
 = ? not real

$$\sqrt{-25} = \sqrt{-1} = \sqrt{-1}$$

Can we define $\sqrt{-1}$

so we can use it in computations?

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Introduction: What about...?

$$\sqrt{-25}$$
 = ? not real
 $\sqrt{-25}$ = $\sqrt{25}$ $\sqrt{-1}$ = $5\sqrt{-1}$

Can we define $\sqrt{-1}$ so we can use it in computations?

Yes! Define:

$$i = \sqrt{-1}$$
 and $i = -1$

$$i^2 = [(-1)^{1/2}]^2 = (-1)^1 = -1$$

power rule

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Define: Complex Number

$$a + bi$$

eg: 3 +2i

October 11, 2015

where a is real & bi is imaginary

If a = 0, then 0 + bi = bi

eg: 2i

pure imaginary

If b = 0, then a + 0i = a

eg: 3

real number

Class Notes: Prof. G. Battaly, Westchester Community College, NY

Homework

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Operationswith Complex Numbers

$$a + bi$$

treat *bi* terms as if it werea variable term and complete the operation & simplification

Note: *i* is not a variable

Class Notes: Prof. G. Battaly, Westchester Community College, NY

1.4 Complex Numbers

Addition:

$$(-2 + 6i) + (4 - i)$$

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Operationswith Complex Numbers

treat \emph{bi} terms as if it werea variable term and complete the operation & simplification

Note: i is not a variable

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Addition:

$$(-2 + 6i) + (4 - i)$$

 $-2 + 6i + 4 - i$

$$-2 + 4 + 6i - i$$

 $2 + 5i$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$i = \sqrt{-1}$ and $i^2 = -1$

Operations_{with} Complex Numbers **a** + **bi**

treat *bi* terms as if it werea variable term and complete the operation & simplification

Note: i is not a variable

Homework

1.4 Complex Numbers

Subtraction:

$$(-2 + 6i) - (4 - i)$$

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Operationswith Complex Numbers

treat *bi* terms as if it werea variable term and complete the operation & simplification

Note: i is not a variable

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Subtraction:

$$(-2 + 6i) - (4 - i)$$

$$-2 + 6i - 4 + i$$

$$-6 + 7i$$

$i = \sqrt{-1}$ and $i^2 = -1$

Operations_{with} Complex Numbers a + bi

treat *bi* terms as if it werea variable term and complete the operation & simplification

Note: i is not a variable

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

Multiplication:

$$(-2 + 6i) (4 - i)$$

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Operationswith Complex Numbers

treat \emph{bi} terms as if it werea variable term and complete the operation & simplification

Note: *i* is not a variable

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Multiplication:

$$(-2 + 6i) (4 - i)$$

Operations_{with} Complex Numbers a + bi

treat bi terms as if it werea variable term and complete the operation & simplification Note: i is not a variable

FOIL:
$$(-2)(4) + (-2)(-i) + (6i)(4) + (6i)(-i)$$

 $(-8) + (2i) + (24i) + (-6i^2)$
 $-8 + 26i + (-6)(-1)$
 $-8 + 26i + 6$
 $-2 + 26i$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

$$i = \sqrt{-1}$$
 and $i^2 = -1$

Division:

$$\frac{(-2+6i)}{(4-i)}$$

How?

Use Multiplication Property of One:

- 1. Want result in a + bi form with no denominator.
- 2. Use process similar to rationalizing the denominator. In this case, want a denominator that is a real number (no complex part).

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$$i = \sqrt{-1}$$
 and $i^2 = -1$

How?

Division:

$$\frac{(-2+6i)}{(4-i)}$$

$$\frac{(-2+6i)}{(4-i)} \cdot \frac{?}{(4+i)}$$

Use Multiplication Property of One

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers

$$i = \sqrt{-1}$$
 and $i^2 = -1$ How?

Division:

$$\frac{(-2+6i)}{(4-i)}$$

$$\frac{(-2+6i)}{(4-i)} \cdot \frac{(4+i)}{(4+i)}$$

Use Multiplication Property of One

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

$$i = \sqrt{-1}$$
 and $i^2 = -1$
How?

Division:

$$\frac{(-2+6i)}{(4-i)}$$

$$\frac{(-2+6i)}{(4-i)} \cdot \frac{(4+i)}{(4+i)}$$

$$\frac{(-2+6i) (4+i)}{(4-i) (4+i)} = \frac{-8-2i+24i+6i^2}{16-i^2}$$

$$= \frac{-8 + 22i + 6(-1)}{16 - (-1)} = \frac{-14 + 22i}{17}$$

$$= \frac{-14}{17} + \frac{22}{17}i$$

$$= \frac{a + bi}{\text{form}}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.4 Complex Numbers Simplify:

$$i = \sqrt{-1}$$
 and $i^2 = -1$

1.
$$7 - (-9 + 2i) - (-17 - i)$$

2.
$$(2 + 7i)(2 - 7i)$$

3.
$$\frac{5i}{2-i}$$

4.
$$5\sqrt{-8} + 3\sqrt{-18}$$

5.
$$(-5 - \sqrt{-9})^2$$

6.
$$\sqrt{-12} (\sqrt{-4} - \sqrt{2})$$

7.
$$\frac{-15 - \sqrt{-18}}{33}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

1.4 Complex Numbers Simplify:

$$i = \sqrt{-1}$$
 and $i^2 = -1$

1.
$$7 - (-9 + 2i) - (-17 - i)$$

2.
$$(2 + 7i)(2 - 7i)$$

3.
$$\frac{5i}{2-i}$$

4.
$$5\sqrt{-8} + 3\sqrt{-18}$$

$$19 i \sqrt{2}$$

5.
$$(-5 - \sqrt{-9})^2$$

6.
$$\sqrt{-12} (\sqrt{-4} - \sqrt{2})$$

$$-4\sqrt{3}-2i\sqrt{6}$$

7.
$$\frac{-15 - \sqrt{-18}}{33}$$

$$\frac{-5}{11}$$
 - $i\sqrt{2}$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

1.
$$7 - (-9 + 2i) - (-17 - i)$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

1.
$$7 - (-9 + 2i) - (-17 - i)$$

$$-(a+b)$$

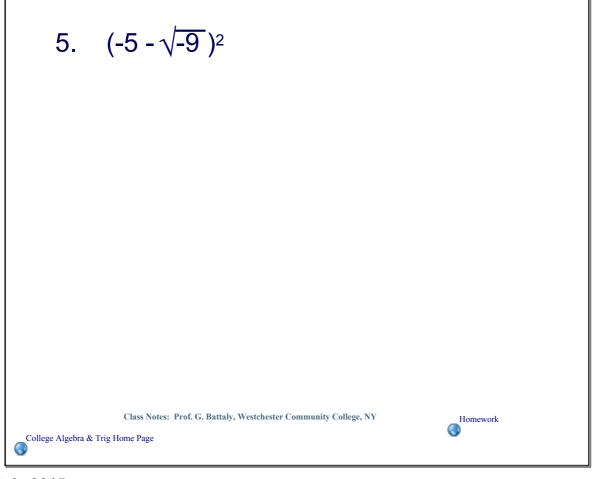
$$-a-b$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

3.
$$\frac{5i}{2-i}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY


3.
$$\frac{5i}{2-i}$$

$$\frac{5i(2+i)}{(2-i)(2+i)} = \frac{10i+5(i)}{4-(i)}$$

$$\frac{10i+5(-1)}{4-(-1)}$$

$$\frac{-5+10i}{5} = \frac{5(-1+2i)}{5}$$
Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

© G. Battaly 2015

5.
$$(-5-\sqrt{-9})^2$$
 $(a+b)^2=a^2+2ab+b^2$ $(a+b)(a+b)$ $(-5-3i)^2$ $(a+b)(a+b)$ $(-5)^2+2(-5)(-3i)+(-3i)$ $(-5)^2+30i+9(-i)$ $(-$

© G. Battaly 2015

6.
$$\sqrt{-12} (\sqrt{-4} - \sqrt{2})$$

$$= 2i \sqrt{3}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

7.
$$\frac{-15 - \sqrt{-18}}{33}$$

Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

Complex Numbers October 11, 2015

7.
$$\frac{-15 - \sqrt{-18}}{33}$$

$$\frac{-15 - \sqrt{-18}}{33}$$

$$\frac{-15 - \sqrt{-18}}{33}$$

$$\frac{3(-5) + 3(-i\sqrt{x})}{33}$$

$$\frac{3(-5) + 3(-i\sqrt{x})}{33}$$

$$\frac{3(-5 - i\sqrt{x})}{33} = (-5 - i\sqrt{x})$$
Class Notes: Prof. G. Battaly, Westchester Community College, NY

College Algebra & Trig Home Page

© G. Battaly 2015